Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

Rev 1.10 <ME> <22/05/2021>

CONTINUOUS INTERNAL EVALUATION- 1

Dept:ME	Sem / Div:IV	Sub:KINEMATICS OF	S Code:18ME44		
		MACHINES			
Date:25/05/2021	Time: 9.30-11.00AM	Max Marks: 50	Elective:N		
Note: Answer any 2 full questions, choosing one full question from each part.					

CRM08

Q N		Marks	RBT	COs		
1	PART A					
1 8	Explain any two inversions of four bar mechanism	15	L2	CO2		
	Explain basic terms used in Radial CAMs with necessary diagram	10	L2	CO1		
	OR					
2	A cam is to give the following motion to a knife-edged follower:	20	L3	CO4		
	1. Outstroke during 60° of cam rotation;					
	2. Dwell for the next 30° of cam rotation;					
	3. Return stroke during next 60° of cam rotation, and					
	4. Dwell for the remaining 210° of cam rotation.					
	The stroke of the follower is 40 mm and the minimum radius of the					
	cam is 50 mm. The follower moves with uniform velocity during both					
	the outstroke and return strokes. Draw the pro- file of the cam when					
	(a) the axis of the follower passes through the axis of the cam shaft					
	Differentiate machine and mechanism.	5	L2	CO1 &		
				CO2		
	PART B					
3 8	A cam is to be designed for a knife edge follower with the following	20	L3	CO4		
	data:					
	1. Cam lift = 40 mm during 90° of cam rotation with simple					
	harmonic motion.					
	2. Dwell for the next 30°.					
	3. During the next 60° of cam rotation, the follower returns to its					
	original position with simple harmonic motion.					
	4. Dwell during the remaining 180°.					
	Draw the profile of the cam when the line of stroke of the follower					
	passes through the axis of the cam shaft					
	Write a short note on Links and Kinematic Pairs	5	L4	CO1 &		
				CO2		
	OR					
4	With a neat sketch explain	15	L2	CO1 &		
	1. Ratchet & Pawl Mechanism			CO2		
	2. Geneva Mechanism	10	1.0	004		
Ш	b Write a short note on Followers		L2	CO4		

HOD